

The correlation between transient blood glucose levels and alterations in cardiorespiratory output among asthma patients κ_{Kingston} treated with nebulised β_2 agonists.

Craig Mortimer^{1,2}, Dimitra Nikoletou², Ann Ooms², Julia Williams¹

(1) South East Coast Ambulance Service NHS Foundation Trust. (2) Kingston University, London

Background

University

London

Although β₂ agonists are effective in treating acute asthma exacerbations, the 'off-target' receptor stimulation that patients often experience can result in a complex interplay of internal and external processes. This may complicate the usual asthma pathway, leading to heightened inflammatory and compensatory responses and consequently more severe and extended exacerbations.

This study aimed to ascertain the impact of nebulised salbutamol on blood glucose levels and its correlation with the ventilation/perfusion ratio (V/Q).

Methods

A pragmatic, single-arm observational study within a single NHS ambulance Trust used both prospective and retrospective data to explore the relationship between Capillary Blood Glucose (CBG) levels and cardiorespiratory output during nebulised salbutamol administration.

Prospective data collected by paramedics at point of care and retrospective data collected from patients receiving nebulised salbutamol over the study timeframe were analysed through descriptive and inferential statistical methods to evaluate the significance of any correlations.

Results

Over a six-month timeframe the hosting ambulance Trust nebulised 7,426 patients, although just 2,412 [32%] had a known history of asthma recorded on their clinical record. When study criteria were added a 'Target Population' of 176 patients were identified, with only pre and post nebulisation heart rate (HR), respiratory rate (RR) and peripheral blood oxygenation levels (SpO2) recorded in 100 incidences.

Analysis of Retrospective Pre and Post Cardiorespiratory Data

Initial	Final	Initial	Final	Initial	Final						
HR	HR	RR	RR		SpO2						
(n=100)	(n=100)	(n=100)	(n=100)	(n=100)	(n=100)						
100.79	97.44	25.03	20.07	95.44	97.71						
18.14	16.78	6.86	4.83	5.43	2.67						
1.81	1.68	0.69	0.48	0.54	0.27						
0.0163 2.4441 99 3.35		less than 0.0001 8.6384 99 4.96		less than 0.0001 4.7305 99 -2.27							
						Lower	Llmmar	Lawer	Llmmon	Lauran	Llonor
											Upper
						0.63	6.07	3.82	6.10	-3.22	-1.32
statistically significant.		extremely		extremely							
		statistically		statistically							
		significant.		significant.							
	(n=100) 100.79 18.14 1.81 0.0 2.4 9 3. Lower 0.63 statis	HR (n=100) (n=100) 100.79 97.44 18.14 16.78 1.81 1.68 0.0163 2.4441 99 3.35 Lower Upper 0.63 6.07 statistically	HR (n=100) HR (n=100) RR (n=100) 100.79 97.44 25.03 18.14 16.78 6.86 1.81 1.68 0.69 0.0163 less than 8.6 2.4441 8.6 99 9 3.35 4. Lower Upper Lower 0.63 6.07 3.82 statistically significant. extrematically statis	HR (n=100)HR (n=100)RR (n=100)RR (n=100)100.7997.4425.0320.0718.1416.786.864.831.811.680.690.48O.0163 2.4441 99 3.35less than 0.0001 8.6384 99 4.96LowerUpper 0.63LowerUpper 6.10LowerUpper 3.826.10statistically significant.	HR HR RR RR (n=100) RR (n=100) (n=100) 100.79 97.44 25.03 20.07 95.44 18.14 16.78 6.86 4.83 5.43 1.81 1.68 0.69 0.48 0.54 0.0163 less than 0.0001 less than 2.4441 8.6384 4.77 99 99 4.96 -2. Lower Upper Lower Upper Lower 0.63 6.07 3.82 6.10 -3.22 statistically significant. extremely statistically statistically statistically						

Main Trends (Retrospective Data)

- A decrease in patients' HR and RR post treatment [HR: 65%; RR: 74%], with both rates decreasing simultaneously in 48% of patients.
- SpO2 levels show a tendency to increase [59%] when either HR or RR decreases [HR: 38%; RR: 43%], but this occurs only 26% of the time when both HR and RR reduce.

Of the 100 subset, 8 patients had both pre and post CBG measurements recorded. Of these only *one patient demonstrated a reduction in CBG levels, a patient that was undergoing palliative care at the time with multimorbidity and polypharmacy.

Main Trends (Prospective Data)

- Pretreatment CBG ranged from 4.6 to 8.9 mmol/L, compared to 5.2 to 8.8 mmol/L post treatment.
- Two recruited patients were diagnosed with diabetes. These were the only patients who showed an increase in HR, decrease in RR and increase in both SpO2 and CBG levels.

Analysis of Prospective Pre and Post CBG Data

Group	Initial CBG	Final CBG	Initial CBG (*Outlier Removed)	Final CBG (*Outlier Removed)	
	(n=8)	(n=8)	(n=7)	(n=7)	
Mean	5.988	6.363	5.571	6.243	
Standard Deviation (SD)	1.611	1.141	1.188	1.177	
Standard Error Mean (SEM)	0.570	0.404	0.449	0.445	
The two-tailed P value (Sig.)	0.2924		0.0067		
Test Static (t)	1.1386		4.0501		
Degree of freedom (df)	7		6		
Mean of Initial measurement	-0.375		-0.671		
minus Final measurement		Land Control			
95% Confidence Interval of			M		
the Difference	Lower	Upper	Lower	Upper	
	-1.154	0.404	-1.077	-0.266	
Significance	not statistica	ally significant.	very statistically significant.		

Conclusion

A strong correlation was observed between pre and post treatment Capillary Blood Glucose levels (CBG) alongside proactive V/Q matching, reflected through changes in the Respiratory Rate, Heart Rate and Peripheral Blood Oxygen Saturation level. These changes suggest real time side effects amongst some asthma patients treated with nebulised salbutamol, which may have ramifications to their short and long term health.

Given the complexity of variables, such as anxiety, comorbidities and the intricate interplay between Respiratory Rate, Heart Rate and CBG, the critical need for monitoring all of these in acute asthma cases is highlighted, as these potential cardiorespiratory and endocrine alterations could exacerbate the condition. Further investigation is essential to understand why certain asthma patients may be more vulnerable to these drug induced side effects than others.

Abstract: 509

PCRS September 20