

Development and validation of a novel measure of inhaler technique: The Portsmouth Inhaler Technique (PIT) Score

R De Vos^{1,2,3}, M Lomax³, H Mackenzie⁴, J Longstaff², R Clark¹, M Chauhan², D Neville¹, T Jones^{1,2}, I Kostakis², M Sanders⁵, TP Brown^{1,2,3}, AJ Chauhan^{1,2,3}

¹Respiratory Department ²Research & Innovation Department; Queen Alexandra Hospital, Portsmouth Hospitals University NHS Trust ³University of Portsmouth, ⁴ University of Southampton, ⁵University of Hertfordshire

Background

- -Despite decades of inhaler use, poor inhaler technique remains a major barrier to effective respiratory disease management, directly contributing to poor clinical outcomes and a significant global economic burden.
- -Whilst scoring systems are commonly used in healthcare to evaluate outcomes, no validated tool exists in the UK to assess and quantify inhaler technique across device types.

Objective

To develop and validate a novel scoring system to evaluate and measure inhaler technique across device types in adults and children.

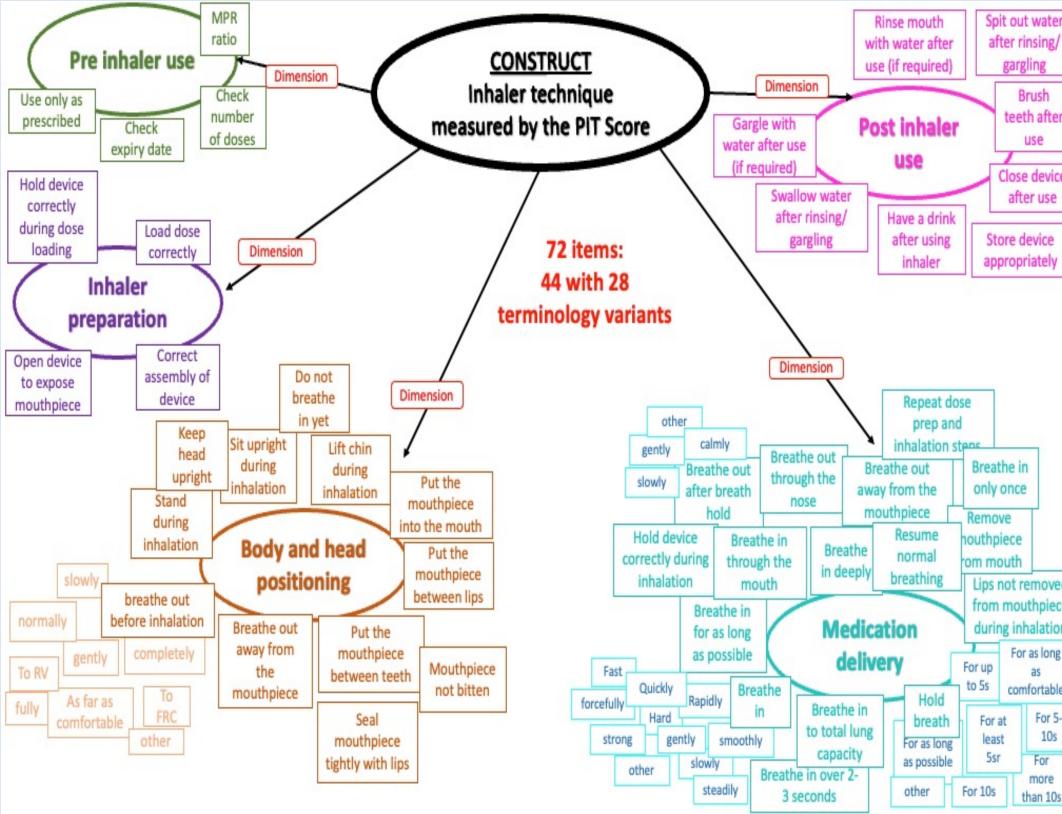
Methods

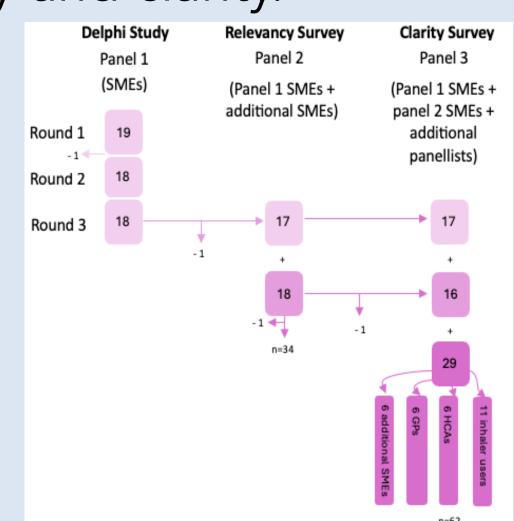
Two stages of scale development were carried out:

1. Scale development (item generation):

This stage identified a comprehensive set of inhaler technique assessment steps (items) across device types in adults and children.

-A systematic review of literature identified 418 published inhaler technique checklists (figure 1).




Figure 2. Items identified in the item generation stage, mapped around 5 dimensions within an inhaler technique assessment

-From these checklists, 72 device-agnostic items (44 items & 28 terminology variants) were extracted to create an item pool (figure

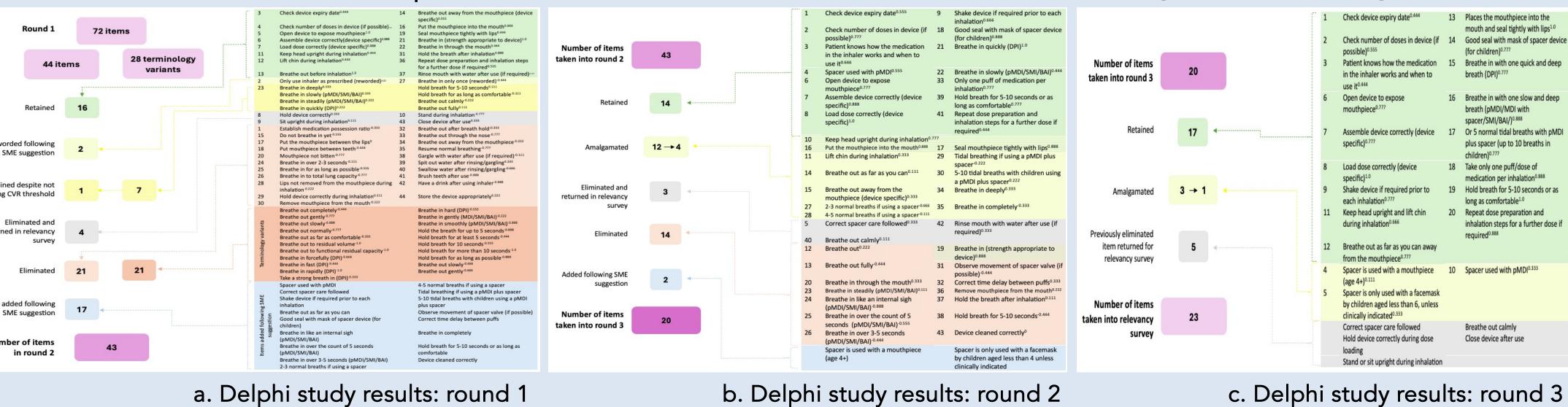
2. Judgement quantification (Item reduction and refinement):

This iterative stage involved inhaler subject For up to 5s | matter experts (SMEs), non-specialists and inhaler users assessing each item in the pool for essentiality, relevancy and clarity.

- -To evaluate item essentiality, SMEs (n=18) participated in a Delphi study. The Content Validity Ratio (CVR) was applied, and subthreshold items of $\leq 0.444^{1}$ eliminated or refined.
- -Remaining items were then assessed for relevancy by a second panel of inhaler SMEs (n=34) using the Content Validity Index (CVI) 2 .
- -Lastly, a third panel including SMEs, non respiratory experts and inhaler users (n=62), assessed the final items for their clarity, again using the CVI (figure 3).

Results

-SMEs representing key respiratory stakeholders took part in the Delphi study.



-Over 3 rounds, the item pool was reduced from 72 to 23 items using the CVR (figures 4a-c).

Figures 4a-c. Summary of retained, eliminated and modified items following each of the 3 Delphi study rounds (CVR results)

- -These 23 items were assessed for relevancy, and all exceeded the CVI threshold of ≥0.78 and modified kappa (k^*) of ≥ 0.74 .
- -Related items were then amalgamated and 17 items assessed for clarity.
- -16 items exceeded the CVI threshold of ≥0.78 with an excellent scale level average CVI (S-CVI-Ave) of 0.8
- -The dichotomous and summative scoring method of the PIT Score was applied to 10 items across 3 key dimensions directly related to medication delivery: 'inhaler preparation', 'body positioning' and 'inhalation' (figure 5).
- -These essential core dimensions can be simplified into '3P's' of inhaler technique optimisation: prepare, position and puff. Figure 5: The Portsmouth Inhaler Technique (PIT) Score

- -The PIT Score is the first validated tool in the UK to quantitatively measure inhaler technique across device types and age groups using a standardised checklist.
- -Developed through a collaborative, iterative and expert-led process involving key respiratory stakeholders, core competencies and critical skills for effective inhaler use have been established.
- -With a Flesch-Kincaid reading age of 11-14, the PIT Score enables healthcare professionals to identify errors and optimise inhaler use.
- -The PIT Score addresses a critical gap in respiratory care by streamlining the evaluation of inhaler technique. This will improve the quality of patient care and support clinical decision making.